## INDIAN SCHOOL MUSCAT

| NAME OF THE         | SECOND PERIODIC TEST | CLASS: XII       |
|---------------------|----------------------|------------------|
| EXAMINATION         |                      |                  |
|                     |                      |                  |
| DATE OF EXAMINATION | 29.05.2022           | SUBJECT: PHYSICS |
|                     |                      |                  |
| TYPE- SET B         | MARKING SCHEME       |                  |
|                     |                      |                  |

| 1 | Yes                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Yes                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Yes Inside a uniformly charged spherical shell electric field is zero but electric potential cannot be zero.  OR                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Between the line joining two similar charges of equal magnitude.                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 | Electric potential                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Scalar quantity                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3 | (i) Electric flux = $\frac{-2Q}{\epsilon_0}$                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 | Gauss's theorem of electrostatics statement  Note -If only formula given- give ½ marks                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Expression for the electric field due to a uniformly charged infinite plane sheet of surface charge density $\sigma$ .                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Derivation                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5 | the origin.                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6 | (i) $V = \frac{k q}{r} = \frac{9 \times 10^{9} \times 8 \times 10^{-7}}{0.09} = 8 \times 10^{4} \text{ V}$<br>(ii) $W = q \text{ V} = 32 \times 10^{-5} \text{ J}$<br>No, work done is path independent | 1/2 +1/2<br>1/2 +1/2<br>1/2 +1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7 | (1) (c) $\frac{q}{6E_0}$<br>(2) c) Scalar quantity<br>(3) (a) 0.1 $N m^2 C^{-1}$<br>(4) (d) $E_0^{-1}$<br>(5) (b) zero                                                                                  | 1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 5                                                                                                                                                                                                       | Scalar quantity  (i)Electric flux = $\frac{-2Q}{\epsilon_0}$ (ii) Zero  4 Gauss's theorem of electrostatics statement Note -If only formula given-give $\frac{1}{2}$ marks  Expression for the electric field due to a uniformly charged infinite plane sheet of surface charge density $\sigma$ .  Introduction and diagram Derivation  5 (i)Explanation for the reason od electrostatic field be normal to the surface at every point of a charged conductor.  (ii) Equipotential surfaces corresponding to a single positive charge at the origin.  6 (i) $V = \frac{kq}{r} = \frac{9 \times 10^{9} \times 8 \times 10^{-7}}{0.09} = 8 \times 10^{4} \text{ V}$ (ii) $W = q \text{ V} = 32 \times 10^{-5} \text{ J}$ No, work done is path independent  7 (1) $(c) \frac{q}{6\epsilon_0}$ (2) c) Scalar quantity (3) (a) $0.1 \text{ N } m^2 C^{-1}$ (4) (d) $\epsilon_0^{-1}$ |